905 research outputs found

    A Coordinated LVRT Control for a PMSG Wind Turbine

    Get PDF

    RNN Controller for Lane-Keeping Systems with Robustness and Safety Verification

    Full text link
    This paper proposes a Recurrent Neural Network (RNN) controller for lane-keeping systems, effectively handling model uncertainties and disturbances. First, quadratic constraints cover the nonlinearities brought by the RNN controller, and the linear fractional transformation method models the dynamics of system uncertainties. Second, we prove the robust stability of the lane-keeping system in the presence of uncertain vehicle speed using a linear matrix inequality. Then, we define a reachable set for the lane-keeping system. Finally, to confirm the safety of the lane-keeping system with tracking error bound, we formulate semidefinite programming to approximate the outer set of the reachable set. Numerical experiments demonstrate that this approach confirms the stabilizing RNN controller and validates the safety with an untrained dataset with untrained varying road curvatures.Comment: 7 pages, 6 figure

    Uncertainty Quantification of Autoencoder-based Koopman Operator

    Full text link
    This paper proposes a method for uncertainty quantification of an autoencoder-based Koopman operator. The main challenge of using the Koopman operator is to design the basis functions for lifting the state. To this end, this paper builds an autoencoder to automatically search the optimal lifting basis functions with a given loss function. We approximate the Koopman operator in a finite-dimensional space with the autoencoder, while the approximated Koopman has an approximation uncertainty. To resolve the problem, we compute a robust positively invariant set for the approximated Koopman operator to consider the approximation error. Then, the decoder of the autoencoder is analyzed by robustness certification against approximation error using the Lipschitz constant in the reconstruction phase. The forced Van der Pol model is used to show the validity of the proposed method. From the numerical simulation results, we confirmed that the trajectory of the true state stays in the uncertainty set centered by the reconstructed state.Comment: 6 pages, 3 figure

    Dynamic Extension Algorithm Based Tracking Control of STATCOM Via Port-Controlled Hamiltonian System

    Get PDF

    Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture

    Full text link
    In this paper, we propose a deep learning based vehicle trajectory prediction technique which can generate the future trajectory sequence of surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short-term memory (LSTM) based encoder and generates the future trajectory sequence using the LSTM based decoder. This structure produces the KK most likely trajectory candidates over occupancy grid map by employing the beam search technique which keeps the KK locally best candidates from the decoder output. The experiments conducted on highway traffic scenarios show that the prediction accuracy of the proposed method is significantly higher than the conventional trajectory prediction techniques

    Improving Scene Text Recognition for Character-Level Long-Tailed Distribution

    Full text link
    Despite the recent remarkable improvements in scene text recognition (STR), the majority of the studies focused mainly on the English language, which only includes few number of characters. However, STR models show a large performance degradation on languages with a numerous number of characters (e.g., Chinese and Korean), especially on characters that rarely appear due to the long-tailed distribution of characters in such languages. To address such an issue, we conducted an empirical analysis using synthetic datasets with different character-level distributions (e.g., balanced and long-tailed distributions). While increasing a substantial number of tail classes without considering the context helps the model to correctly recognize characters individually, training with such a synthetic dataset interferes the model with learning the contextual information (i.e., relation among characters), which is also important for predicting the whole word. Based on this motivation, we propose a novel Context-Aware and Free Experts Network (CAFE-Net) using two experts: 1) context-aware expert learns the contextual representation trained with a long-tailed dataset composed of common words used in everyday life and 2) context-free expert focuses on correctly predicting individual characters by utilizing a dataset with a balanced number of characters. By training two experts to focus on learning contextual and visual representations, respectively, we propose a novel confidence ensemble method to compensate the limitation of each expert. Through the experiments, we demonstrate that CAFE-Net improves the STR performance on languages containing numerous number of characters. Moreover, we show that CAFE-Net is easily applicable to various STR models.Comment: 17 page

    Compensative microstepping based position control with passive nonlinear adaptive observer for permanent magnet stepper motors

    Get PDF
    This paper presents a compensative microstepping based position control with passive nonlinear adaptive observer for permanent magnet stepper motor. Due to the resistance uncertainties, a position error exists in the steady-state, and a ripple of position error appears during operation. The compensative microstepping is proposed to remedy this problem. The nonlinear controller guarantees the desired currents. The passive nonlinear adaptive observer is designed to estimate the phase resistances and the velocity. The closed-loop stability is proven using input to state stability. Simulation results show that the position error in the steady-state is removed by the proposed method if the persistent excitation conditions are satisfied. Furthermore, the position ripple is reduced, and the Lissajou curve of the phase currents is a circle
    corecore